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Executive summary  

This document describes the second version of the Morphing Mediation Gateway ς architecture, 

concepts and modules ς developed by the Wise-IoT consortium. 

The Morphing Mediation Gateway (MMG) is the key Wise-IoT component for enabling the 

interworking between heterogeneous IoT platforms on the one hand and between IoT device and 

communication technologies and IoT platforms on the other hand. Conceptually, the MMG is part of 

the Integration and Management Layer in the Wise-IoT Layered Architecture View. Since the oneM2M 

platform was chosen for instantiating the Integration and Management Layer, the MMG is used for 

enabling the interworking with specific device & communication technologies, in particular Z-Wave 

and LoRa, and also for interworking with local or domain-specific platforms, in particular OCF, GS1 and 

sensiNact. Since the FIWARE platform was chosen for instantiating the Information Access Layer in the 

Wise-IoT Layered Architecture View, a special focus is on the translation between oneM2M and the 

NGSI context interfaces supported by FIWARE, which are based on the OMA NGSI standard. 

In the MMG approach, the MMG is the driving component behind the translation, decoupling the 

platforms or technologies. The reason for choosing this approach is that the interfaces of involved 

platforms and technologies are conceptually so different that a direct integration becomes infeasible. 

For example, taking the Mca interface (M2M communications application) of oneM2M and the 

FIWARE GEs with their NGSI interfaces as examples, the Mca allows REST operations on a certain set of 

generic resource types, whereas the NGSI interface allows the retrieval of entities and their attributes, 

i.e. the former is resource-centric, whereas the latter is information-centric and a direct translation is 

not possible. Instead information is retrieved from the source system and, where possible, translated 

to the target system. Thus applications can use the respective operations of the systems they interact 

with to handle and manipulate the information. 

Semantics plays an important role in the MMG approach. Even if the representations on different 

platforms are very heterogeneous, the underlying semantic concepts have to be the same, thus 

enabling the translation of information from one representation into the other. This deliverable 

focuses on the architectural aspects of the MMG, whereas the semantic aspects are presented in 

Wise-IoT Deliverable D2.5 [2]. 

The MMG has an MMG Manager that allows the configuration and deployment of MMG modules. 

MMG modules typically support one type of source platform or technology and one type of target 

platform. The respective source and target platform instance to be used is then configured through 

the MMG Manager. MMG modules are implemented as Docker images that can be instantiated at 

runtime as Docker containers. 

Depending on the platforms or technologies between which the translation is supposed to happen, the 

MMG modules can be relatively simple or highly complex and may even have more fine-grained 

adaptation capabilities. In particular the Adaptive Semantic Module (ASM) can be used to discover 

new types of information, to check whether suitable translation components are available or can be 

downloaded from a repository, and to dynamically instantiate the translation component, enabling the 

automatic translation. 
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1  Introduction  

Many standardized IoT protocols (e.g., HTTP, CoAP, MQTT) and APIs(e.g., oneM2M, NGSI) are used for 

IoT devices, gateways and servers. By definition, IoT is a technology interconnecting various devices via 

the Internet to exchange messages for better services. This means that IoT entities (implemented 

using different protocols) should communicate with each other. However, as each protocol and API 

defines its own message format, semantics and modelling mechanism, it is not easy to support 

interoperability.  

The objective of the Wise-IoT project is to propose a framework to facilitate the interoperability 

between various IoT platforms and protocols currently used in Europe and in Korea and offer 

portability through an information access layer interconnecting different platforms. However, it is 

unrealistic to completely uniformize the data and semantics model for each of the underlying 

platforms, thus this framework needs a component that enables building bridges between those 

models, in particular towards the information access layer and the agreed information model. 

The Morphing Mediation Gateway (MMG) is the entity for enabling the interworking between 

heterogeneous IoT platforms on the one hand and between IoT device and communication 

technologies and IoT platforms on the other hand. This deliverable introduces the architectural aspects 

of the MMG, whereas Wise-IoT Deliverable D2.5 [2] introduces the semantic aspects of the MMG and 

related components, in particular it describes how semantics is used to achieve interoperability 

between heterogeneous IoT standards. 

In release 1, various MMG components were designed and implemented. This shows the ability of 

Wise-IoT to provide a flexible and dynamic framework interconnecting various IoT entities. However, 

most Rel-1 MMG components are mainly focusing on generalization of message translation and are 

not fully integrated into a single framework. In addition, the interface between MMG components and 

MMG manager (an umbrella MMG component managing MMG components) is only designed for very 

limited functionalities, e.g., show the number of managing devices.  

The overall goal is to provide an integrated, flexible MMG solution, in which different translation 

modules developed by different partners can be dynamically instantiated at runtime. As for the first 

release the underlying mechanisms needed are not in place yet, different standalone components 

were developed by partners.  

The MMG components we have implemented so far can be categorized into one of the following 

gateway entities: 

- Fixed Configuration Gateway: Such a gateway explicitly maps information/resource instances 

from source to target system. This approach works well for small set of static sources. New 

sources require updated configurations, new source types may require installation of new 

translation modules. Ą FIWARE-oneM2M-Proxy MMG, Z-Wave-oneM2M MMG, GS1-oneM2M 

MMG, etc.  

- Discovery-based Gateway: Such a gateway regularly discovers (subscription/polling) relevant 

sources and adapts resource mappings according to configuration. This works well for a 

changing set of sources of fixed type. Changes of relevant source types require updated 

configuration, i.e. discovery specification ς a new source type may also require installation of 

new translation module. 

- Semantic Mediation Gateway: A Discovery-based Gateway using semantics for describing 

information / resource instances and semantic discovery. 
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- Morphing Mediation Gateway: A Discovery-based Gateway with a discovery functionality that 

discovers a larger variety of candidate information / resource instances. Discovering new types 

of information / resources may then trigger the dynamic download, instantiation and 

configuration of new translation modules given that such modules exist. Through this 

mechanism, new information and suitable translation modules may be provided at any time 

ŀƴŘ ǘƘŜ aƻǊǇƘƛƴƎ aŜŘƛŀǘƛƻƴ DŀǘŜǿŀȅ Ŏŀƴ ŀŘŀǇǘ ƛǘǎŜƭŦ όάƳƻǊǇƘέύ ŀǘ ǊǳƴǘƛƳŜ ǘƻ ƘŀƴŘƭŜ ǘƘŜ 

translation. 

In the second release, all MMG components are transformed into MMG modules that can be flexibly 

and dynamically deployed in MMG instances  

The remainder of the document is structured into two main parts. The concept of the MMG Release 2 

is introduced with an introduction to the MMG manager. The second part is devoted to address all 

MMG modules developed by Wise-IoT partners. The full functionalities of each MMG module and the 

Manager are provided.  
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2  The Morphing Mediation Gateway  c oncept  

The Morphing Mediation Gateway (MMG) is the entity in charge of translating, at runtime, a 

representation of information from one platform or technology to another (cf. Figure 1). 

 

Figure 1: Abstract architecture of the MMG 

The MMG decouples the source platform /  technology and the target platform. The reason for 

choosing this approach is the high diversity of the interfaces, making a direct translation between the 

requests for accessing information impossible. Taking the oneM2M platform with its Mca interface 

(the interface between oneM2M applications and oneM2M platform) and the FIWARE GEs with their 

NGSI interfaces as examples (cf. Figure 2), the Mca allows REST operations on a certain set of generic 

resource types, whereas the NGSI interface allows the retrieval of entities and their attributes, i.e. the 

former is resource-centric, whereas the latter is information-centric and a direct translation is not 

possible. Instead information is retrieved from the source system and, where possible, translated to 

the target system. Thus applications can use the respective operations of the systems they interact 

with to handle and manipulate the information. oneM2M applications use the Mca interface to 

discover and retrieve/manipulate resource content, whereas NGSI-applications request entities, 

identifying attributes of interest. 

 

Figure 2: Example of MMG instantiation 

In the first release, partners had provided an initial set of standalone gateways to be able to start 

supporting use cases. In the second release, the standalone gateways are replaced by MMGs on which 

ŘƛŦŦŜǊŜƴǘ ƳƻŘǳƭŜǎ Ŏŀƴ ōŜ ŘȅƴŀƳƛŎŀƭƭȅ ƛƴǎǘŀƴǘƛŀǘŜŘ ŀǘ ǊǳƴǘƛƳŜΦ ¢ƘŜ ǘŜǊƳ άƳƻǊǇƘƛƴƎέ ƛƴŘƛŎŀǘŜǎ ǘƘŀǘ ǘƘe 

functionality of the gateway can be dynamically changed at runtime, adapting to the changing 
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environment of the different deployment scenarios. For example, sensors of a new type may become 

available or existing sensors may be replaced using a different underlying technology. The MMG 

enables the handling of these changes without disruptions. 

 

Figure 3: MMG in in the Wise-IoT Layered Architecture View 

Figure 3 shows the MMG in the Wise-IoT Layered Architecture View [1]. Conceptually, it is part of the 

Integration and Management Layer and it is used for two purposes. On the one hand, MMGs are used 

for translating from different technologies in the Data Collection and Device Actuation Layer to a 

common IoT platform in the Integration and Management Layer. In case of Wise-IoT the standardized 

oneM2M platform was chosen for this purpose. On the other hand, MMGs are used for translating 

between the Integration and Management Layer platform and the Information Access Layer platform, 

which in Wise-IoT is implemented using the FIWARE platform using FIWARE Generic Enablers (GEs) 

based on the standardized OMA NGSI context interfaces. 

Overall, the focus of Wise-IoT is to make information available to applications. Especially on the 

information access layer, applications can specify the information they are interested in using a 

standardized interface. Also on the other layers the focus is on making the IoT-related information 

available to the oneM2M and FIWARE platforms respectively. The MMG is the component that 

enables this translation. 

In contrast, some standards and projects take a service-centric approach. In particular, the W3C Web-

of-Things group [6] standardizes a Thing Description [7]. The Thing Description describes the Thing (in 

the sense of an IoT device, not an abstract entity like a room or a table), in particular the interface, 

how applications can interact with it. Thus, in order to interact with the Thing, IoT applications need to 

understand the respective Thing interface ς and there could be a large number of heterogeneous 

interfaces. The focus is on how Things and related services are described, not on how information is 

modelled, which could be highly heterogeneous. 

The goal in Wise-IoT is to provide applications with a single point of access, ideally on the abstraction 

level of the Information Access Layer, where information can be directly accessed. Another approach is 

to provide a central point for discovering services or information and then accessing these directly in a 

second step. The Big IoT project [8] develops a Market Place where registered platforms and services 

can be discovered using a unified Web API [9]. 
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The symbIoTe project [10] takes the approach of providing core services and enable platforms to plug 

into these. In order to do so, platforms have to implement key functionalities and there are multiple 

compliance levels, identifying how and on what level platforms interoperate. Level 1 is advertising and 

making resources available, level 2enabling the federation of platforms, level 3 the simple integration 

and dynamic reconfiguration of IoT devices in local spaces and finally, level 4 that enables device 

roaming between local spaces. In Wise-IoT, the goal is to keep standardized and deployed platforms as 

they are and simply make the information from one platform or technology available in another. This 

means existing platforms do not have to be modified for compliance, but instead additional MMG 

modules supporting the translation have to be made available. 

The INTER-IoT [11] approach seems to be closest to the MMG approach of Wise-IoT as it provides 

building blocks and a methodology to connect different IoT platforms at different layers. This indicates 

that some kinds of mediation gateways (in Wise-IoT terminology) are envisioned. However, there is no 

discussion about supporting an MMG adaptation at runtime as in Wise-IoT (by dynamically 

downloading and instantiating new modules) or dynamically discovering new kinds of information and 

self-adapting to enable automatic translation as in the case of the Adaptive Semantic Module (ASM) 

for the MMG. 

Overall, the goal of Wise-IoT is to use standardized platforms ς oneM2M on the Integration and 

Management Layer and NGSI-based FIWARE GEs on the Information Access Layer. Instances of these 

platforms are already part of existing deployments, e.g. oneM2M in Busan and FIWARE in Santander. 

The MMG allows connecting these platforms without having to interfere with the currently deployed 

platforms, simply adding a new component that interacts with the platforms. In the same way, the 

MMG allows connecting new technologies to the existing platform deployments. The approach is 

information-centric, i.e. the focus is on translating information from a source platform or technology 

to make it available on a target platform. To enable this, a semantic approach is taken, i.e. even if the 

representations on different platforms are very heterogeneous, the underlying modelled concepts are 

the same and this enables the translation. The semantic aspects are presented in Wise-IoT Deliverable 

D2.5 [2].The focus of this deliverable is on the architectural aspects of the MMG. In Release 2 it 

consists of a management part that can deploy different modules at runtime. Each module is 

responsible for the translation between a source platform or technology and a target platform. 

Chapter 3 introduces the design and implementation of the MMG and its modules. 
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3  Morphing Mediation Gateway  R2  

This section defines the Morphing Mediation Gateway components that have been developed in the 

second release of the MMG. 

3.1  Architecture  

The Morphing Mediation Gateway consists of an MMG Manager that can dynamically deploy MMG 

modules as shown in Figure 4. The MMG modules are provided as Docker [5] images that are 

instantiated by the MMG Manager ς as Docker containers. The Docker images are provided in a 

repository. By adding a new Docker image to the repository, e.g. for supporting a new translation 

between platforms or technologies, it can immediately be instantiated by an MMG Manager, 

dynamically enabling the translation in a running system. 

 

Figure 4: Morphing Mediation Gateway Architecture 

In Section 3.2 the Morphing Mediation Gateway Manager is introduced. The MMG Modules, as shown 

in Figure 4, are then described in subsections of Section 3.3. 

3.2  Morphing Mediation Gateway Manager  

The Morphing Mediation Gateway Manager is a containerized management software component to 

manage various MMG modules. The MMG Manager allows users to select and instantiate required 

MMG modules. For example, a user who wants to operate Z-Wave devices and OCF field devices in 

his/her room using a oneM2M IoT platform, he/she can instantiate Z-Wave-oneM2M and OCF-

oneM2M MMG modules using the MMG manager. The MMG manager provides the same interface for 

each MMG module. As each MMG module is containerized using docker, it can be dynamically 
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instantiated based on the needs from the user. The basic information to configure each docker MMG 

module is communicated using REST operations (e.g. HTTP Get, Post).  If a user wants to introduce a 

new MMG docker module to the MMG manager, the user needs to develop the module based on the 

following interface, MI interface, which enables two main features: 

 

Figure 5: MMG Manager Interface for interaction 

-  

- Configuration part: when the MMG Manager instantiates a new MMG docker container from 

the repository, it has to provide basic information to configure the MMG module. (e.g., IP 

address and port numbers of source and target IoT entities, data information, basic 

configuration information) Optionally, the MMG manager can provide a query or selection 

criteria for devices that need to be monitored by the MMG module.  

- Information part: This part is used to exchange the current status of an MMG module running 

in the MMG manager. Using this interface, the user can select devices to control, get the 

number of managing devices and check running time.  

As shown in Figure 5, each docker MMG module has to support two functions, control and data parts. 

The control part provides an interaction with the MMG manager to manage various control related 

information such as the number of connected devices, while the data part is to convert data from the 

source platform to the destination platform.  

Currently the repository containing various IoT MMG modules is located in the MMG manager's local 

environment. However, the repository can be located at any location. Therefore, if the user intends to 

add a new MMG module to the repository and wants to run it in his/her MMG manager, he/she must 

provide the IP address of the repository to download MMG modules. 

The user interface of the MMG Manager (see Figure 6) provides the following functions:  

1. Displays a list of available source types, e.g. NGSI context model, oneM2M ;  

2. Displays a list of available MMG container images from the repository ;  

3. Displays a list of available target types, e.g., oneM2M, NGSI context model ;  

4. Gets user input to specify sources to be converted into the targeted system, e.g., sensors in 

Santander, actuators in Busan.  

5. Shows the system resource consumption of each docker module. (CPU usage, Memory usage) 
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Figure 6: Snapshot of MMG Web portal 

 

3.3  MMG  module s 

The MMG modules have been implemented as Docker images that can be dynamically instantiated as 

Docker containers by the MMG Manager. In the following the MMG modules available in Release 2 of 

the MMG are described. 

3.3.1  Adaptive Semantic Module  

3.3.1.1 Motivation 

The Morphing Mediation Gateway concept as such enables the dynamic deployment of complete 

modules. Modules are, in general, relatively coarse-grained units providing the translation from a 

source to a target system and their deployment is generally triggered by an administrator. To enable 

self-adaptation on a more fine-grained level, the Adaptive Semantic Module (ASM) has been designed. 

The idea is that for given source and target platforms, a running ASM can adapt itself when new types 

of information become available. 

A configured ASM can discover new sources of information and check whether suitable ASM 

subcomponents for translation have already been instantiated. If this is the case, they can be re-used. 

Otherwise, the ASM can check whether fitting components are available in the Component Repository 

and, if this is the case, dynamically instantiate them. 

If a new service provider wants to make information available in the source platform of the ASM and 

make sure they also become available in the target platform of the ASM, it needs to make sure that a 

fitting translation component is made available in the Component Repository and that the new 

information can be discovered by the ASM. If these conditions are given, new types of information can 

be made available dynamically in the ASM target platform without re-starting the MMG and the ASM. 
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While the ASM provides a flexible framework that can be applied to different source and target 

systems, its primary application area in Wise-IoT is the translation from a oneM2M source platform to 

an NGSI-based FIWARE platform.  

To enable this translation, semantic annotations in the oneM2M system are being used. Together with 

the actual information, e.g. sensor values, the semantic annotation needs to provide the basis for 

creating the representation according to the NGSI data model used in FIWARE, which models the 

world as entities that have attributes with values and meta data. For example, the entity may be a bus 

with an identifier Bus123, which is of type Bus. The bus has an attribute speed whose value is 

measured by a sensor and the unit of measurement (km/h) is part of the metadata. In the oneM2M 

the actual speed value may be stored in contentInstance resources in a container resource and all the 

additional information(entity id, entity type, attribute name, data type, unit) may be provided as a 

semantic annotation that is stored in a semantic descriptor resource attacthed to the container 

resource. Instead of directly providing all information in the semantic descriptor, it is sufficient to 

provide enough information to be able to dervice missing information. For this purpose additional 

information is used that can be made available using a Context Provider, which may connect to 

external systems. 

The following subsections describe the architectural framework, the individual components and the 

internal data format of the ASM. More details about how semantics is used in the translation from 

oneM2M to FIWARE can be found in the Wise-IoT Deliverable D2.5 [2]. 

3.3.1.2 Adaptive Semantic Module architecture 

The ASM consists of multiple components. The modular design shown in Figure 7 and an intermediate 

Internal Data Format allow for an easy extension of multiple source or target systems. The separation 

of API interaction (Source Adapter and Target Adapter) and content translation (Input Translator and 

Output Translator) allows the system to efficiently create translation chains between multiple source 

and target systems. The ASM uses OSGi to enable the modular design as well as to configure and 

instantiate multiple instance of specific implementations of the core components. The core 

components are the following. 
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Figure 7: Architecture overview Adaptive Semantic Module 

Source Adapter 

An implementation of the Source Adapter connects to an external IoT system and provides the raw 

data from the IoT System into the ASM. In order to be linked together with Input Translators a Source 

Adapter will publish what type of IoT system it is capable of connecting to and providing data from. A 

Source Adapter can request multiple Input Translators during runtime, allowing it to adapt to specific 

data formats it might discover from its source system. Additionally a Source Adapter can provide hints 

towards the Input Translators which might be required for the translation process.  

Input Translator 

An Input Translator takes the raw data from a Source Adapter and translates it into an intermediate 

Internal Data Format (see Section 3.3.1.3). If the Source Adapter is missing information, which is 

needed to translate the raw data into the Internal Data Format, the Input Translator can request one 

or multiple Context Providers to enable the translation process. Hints provided by the Source Adapter 

can be forwarded to the Context Provider. An Input Translator publishes which kind of Source Adapter 

it supports. 

Context Provider 

A Context Provider is used to support the translation process. Its main goal is to provide additional 

information in case a source IoT system is missing relevant information for the translation, e.g. type of 

the data is missing. Since this additional information is specific to the source IoT system Input 

Translators have to be aware of the specific additional information given by a Context Provider. The 

Adaptive Semanitc Module provides a set of constants to support the exchange between Context 

Providers and Input Translators.  
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Output Translator 

An Output Translator will translate from the Internal Data Format to the required format of a specific 

IoT target system. Using the intermediate Internal Data Format no additional information from a 

Context Provider is required. Hence an Output Translator implementation can straight forward 

translate into the required raw format of the the target IoT system.  

Target Adapter 

The task of a Target Adapter is to communicate with the target IoT system API and publish the raw 

data coming from a matching Output Translator into the target system. 

Mediation Manager 

The main task of the Mediation Manager is to create and disassemble translation chains. In order to 

achieve this, the Mediation Manager uses the OSGi service discovery to be aware of all Translators, 

Context Providers and Adaptors present in the ASM. On request it will create and configure new 

instances of the required component to create a translation chain during runtime. These requests can 

either come from the External Management Interface, from already instantiated Source Adapters 

which require new Input Translators or from Input Translators which require a new Context Provider. If 

a required component with a specific configuration is already instantiated it will be reused to save 

resources. In the case that a required component is not available within the OSGi container the 

Mediation Manager will look up the component in a remote component repository. If a component is 

not available to build a requested translation chain the Mediation Manager will store the request and 

fulfill it when all required components are available.  

External Management Interface 

The External Management Interface provides a REST interface to request new translations from a 

specific source IoT system instance to a specific target IoT system instance. The requests are 

forwarded to the Mediation Manager which takes care of linking all the required components with 

each other. 

3.3.1.3 Internal Data Format 

 

Figure 8: Data Value structure 

The Internal Data Format is used as an intermediate format during the translation process. Hence it 

has to be capable of holding all typically used IoT data formats, in particular the ones encountered in 

the Wise-IoT use cases. As shown in Figure 8 and Figure 9, a JSON inspired approach was taken for the 
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Internal Data Format where an instance of the format has a list of Data Values where each value can 

be the root of an Internal Data Format instance again or a real value. Similar to JSON an object has 

name and value where value can be object again. This format should be capable of holding all kinds of 

tree formats as well as relationship based formats. 

 

Figure 9: Internal Data Format structure 

As shown in Figure 8 and Figure 10, each of the Internal Data Format subfields has an actual value like 

Name or Type and an additional MetaData field or a list of MetaData fields to support contextual 

information like e.g. data type, unit of the value or timestamp etc. The Adaptive Semantic Module 

provides a set of constants to be used when filling up the MetaData fields, in order to support the 

communication between Input Translators and Output Translators. 

 

Figure 10: Data Identifier, Data Type and MetaData structure 

For a seamless interaction between Output Translators and Input Translators there has to be an 

agreement on where certain MetaData is placed. For instance a timestamp could be connected to the 

actual value or to the DataIdentifier or a unit type (e.g. cm or kg) could be connected to the DataType 

or to a specific value. This contract between the Translators might have to be further enforced in 

future by providing specific setters and getters for common MetaData. 
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3.3.2  Context -Aware Auxiliary Gateway  

 

Figure 11 FIWARE-to-oneM2M component interaction with MMG Manager 

 

Context-Aware Auxiliary Gateway (CAG) is one of the dockerized MMG modules developed for 

converting IoT information based on resource mapping rules. More specifically, it gets the Entity 

information from the FIWARE platform (NGSI), translates the information and stores itin the oneM2M 

platform based on resource mapping rules. For example, if users who would like to get information 

about their devices on a oneM2M server can also get information about their devices natively 

registered with a FIWARE server without specific handling. With the resource mapping rule, the data 

over FIWARE NGSI and oneM2M Mca should be interoperable by the resource mapping rules. The 

resource mapping rules are not fixed but they can be changed according to the scenarios. In the Wise-

IoT project, CAG is in charge of converting data from FIWARE NGSI to oneM2M Mca based on smart 

parking scenarios of Santander smart city. Since this component is dockerized,the MMG Manager can 

load and run it from the MMG Repository whenever users would like to use it. Therefore it acts as a 

gateway between the FIWARE platform and oneM2M as descibed in Figure 11. 

¶ Step1: Receiving FIWARE Entity information from the web-based MMG (Morphing Mediation 

Gateway) Manager which provides users with pop-up windows for selecting the specific Entity 

and also CAG has implemented the REST API for receving the Entity information dynamically. 

¶ Step2: CAG gets the FIWARE device information based on Entity Name and Entity Type.  

¶ Step3: CAG converts FIWARE Device information to oneM2M standard. 

¶ Step4: After all FIWARE device information is converted into oneM2M standard, CAG 

subscribes FIWARE devices for tracking devices status changes. 

¶ Step5: CAG receives notification messages from Context Broker when registered FIWARE 

device status value is changed. 

¶ Step6: Finally, CAG updates the device information stored in oneM2M server. 
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3.3.3  Z-Wave -oneM2M  

Z-Wave-oneM2M is one of the MMG modules used by the Morphing Mediation Gateway (MMG) 

manager. The essence of this module is to coordinate Z-wave devices (e.g. senors) with the help of Z-

Wave controllers to create oneM2M resources in oneM2M server. The data then can be used to build 

oneM2M applications for different purposes. The Z-Wave based devices are managed at nodes with 

the help of Z-Wave controllers. The nodes in general are located in different places and communicate 

over IP network to Z-Wave-oneM2M. 

 

Figure 12: Z-Wave-oneM2M module interaction with MMG Manager 

Z-Wave-oneM2M interacts with the MMG manager over a set of defined interfaces in order to provide 

data from different nodes. The MMG manager acts as a dashboard and provides an IP address of the 

oneM2M based server and other configurations to Z-Wave-oneM2M. The MMG manager is able to 

show the number of the Z-Wave devices attached to a specific node. The MMG Manager can send 

instructions to Z-Wave-oneM2M about specific Z-Wave controller in order to add or remove any Z-

Wave device.  

Z-Wave-oneM2M controls multiple Z-Wave controllers attached to different nodes. A single Z-Wave 

controller has the capability to manage multiple Z-Wave devices. As new data arrives (e.g. the data can 

be a temperature value), it is collected at the node by Z-Wave controller and then sent to Z-Wave-

oneM2M running inside the MMG Manager. This data is then translated into oneM2M format and 

written to oneM2M based server in form of oneM2M based resources.  
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Figure 13: Organization of elements in Z-Wave-oneM2M 

There are vast number of scenarios in which this module can be helpful. For example, when a Z-Wave 

device captures an unusually high temperature e.g. in case of fire then the situation can be propagated 

instantly from Z-Wave-oneM2M to oneM2M server. Then an emergency-handling application can 

identify and locate the situation and take steps to handle it.  Since Z-Wave based devices can capture 

several different attributes such as temperature, humidity, luminance, motion and so on, Z-Wave-

oneM2M can be used in variety of different applications and scenarios. 

3.3.4  OCF -oneM2M   

With OCF-oneM2M interworking technical specification [4] implementation, oneM2M applications can 

control and get data from OCF devices. The OCEAN open source community provides OCF IPE as well 

as the &Cube oneM2M gateway platform, the Mobius server platform. Figure 14 shows the system 

composition for OCF devices to be used in oneM2M system with the open sources. 

 

Figure 14: OCF-oneM2M interworking configuration with open source implementations 
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For the interworking, firstly the OCF devices and resources are represented in oneM2M resources and 

exposed into the gateway platform (i.e. MN-CSE). The other application (e.g. registered to the server 

platform) can use oneM2M discovery API to search for an OCF device matching the filter criteria in the 

query.  

For control, the application can send control message in <contentInstance> resource create request to 

the gateway platform. It triggers notification message and is sent to the OCF IPE. The IPE then 

translates the message into OCF message and send the OCF protocol message to the corresponding 

OCF device which has OCF server capability. 

The OCF IPE observes OCF resources and when it gets notifications for the update, it triggers a new 

<contentInstance> resource creation that could be consumed by oneM2M application as updated OCF 

resources. 

3.3.5  LoRa -oneM2M  

LoRa-oneM2M interworking technology is deployed in WISE-IoT firstly for the smart parking use case. 

In the oneM2M specification, the IPE (Interworking Proxy Entity) is a type of application entity (AE) 

which translates two different protocols. The LoRa IPE consists of LoRa G/W interworking S/W and 

oneM2M AE so it can provide message exchange between LoRa and oneM2M. 

Usages of this LoRa IPE is not limited to LoRa parking sensors as depicted in Figure 15, but also can be 

applied for the other type of LoRa devices (e.g. LoRa trackers). 

 

Figure 15: Smart parking service deployment using LoRa-oneM2M interworking 

Figure 16 shows the oneM2M resource structure for the LoRa IPE, which can be generically used not 

only for parking service but the other services. This structure provides the uplink and downlink 

message transfer between LoRa G/W and a oneM2M platform. When uplink message is generated by 

LoRa device, it gets saved in the oneM2M platform (e.g. IN-CSE) as a <contentInstance> resourceby 

LoRa IPE. In the figure below, the newly created uplink message resource path is 

άƳƻōƛǳǎκғŀǇǇ9¦LҔκғŘŜǾƛŎŜ9¦LҔκǳǇκғƳǎƎҔέΦ bƻǘŜ ǘƘŀǘ ǘƘŜ ǊŜǎƻǳǊŎŜ ƴŀƳŜ ƛƴ Ǉƻƛƴǘȅ ōǊŀŎƪŜǘ όŜΦƎΦ 

<appEUI> resource) means the resource instance name is not fixed. In contrast, when the LoRa IPE 

gets notification from the platform for downlink message, it sends the message to the LoRa G/W and 
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get forwarded to the corresponding LoRa device. To perform this, the LoRa IPE subscribes each LoRa 

ŘŜǾƛŎŜǎΩ Řƻǿƴƭƛƴƪ ƳŜǎǎŀƎŜ ғŎƻƴǘŀƛƴŜǊҔ ǊŜǎƻǳǊŎŜΦ 

Two information in a LoRa protocol message are needed for oneM2M system interworking: application 

EUI (Extended Unique Identifier) and device EUI. Application EUI represents application service (e.g. 

parking service) identifier that service provider defines. Each appEUI resource contains device EUI 

<container> resources as children, which represents individual LoRa device having the same service 

identifier. The LoRa IPE uses this two identifiers in a LoRa message to determine resource path for 

uplink message resource creation and two identifiers in a oneM2M resource to send LoRa downlink 

message to the LoRa G/W. 

 

Figure 16: oneM2M resource structure for LoRa IPE 

3.3.6  GS1 -oneM2M  

 

Figure 17 GS1-oneM2M MMG Docker Instance 
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In the WISE-IoT project, GS1-Oliot is used to collect bus information data from Busan city. In order to 

make the data available on the WISE-IoT platform, more specifically the oneM2M server, the GS1-

oneM2M MMG works as a mediator to sync the data between GS1-Oliot and oneM2M .  

To push the data from GS1-Oliot to oneM2M, the oneM2M Accessing Application of the MMG uses 

the EPCIS querying interface to get data from GS1 and publish it to oneM2M using the MQTT binding. 

Additionally, the bus information is stored in oliot-EPCIS in the form of events and master data (EPCIS 

data model). Therefore, it is the responsibility of the GS1-oneM2M MMG module to translate the 

Oliot-EPCIS data model based information into oneM2M data model before publishing to the oneM2M 

server.  

Similarly, information collected by another platform can be collected back to GS1-Oliot through the 

oneM2M Capturing Application which subscribes to the oneM2M server. It converts the oneM2M 

based data into EPCIS events and master data before storing it into the EPCIS repository. The position 

of the MMG in integrating GS1 with WISE-IoT is shown in Figure 17.  

The dockerized instance of GS1-oneM2M MMG will be stored in the WISE-IoT docker repository. The 

MMG can then be used with minimum configuration, which enables easy interactions with the Oliot 

architecture to collect bus information data. 

3.3.7  sensiNact -oneM2M  

The sensiNact platform is used for the smart skiing use case that is deployed in Europe. This platform, 

developed by the CEA, and hosted in the Eclipse Foundation1 as an open source project, proposes its 

own agnostic data model. It means that the data model does not depend on the targeted environment 

where the platform is deployed. sensiNact allows to connect to the physical devices or upper layer 

platform like oneM2M using bridges, i.e., dedicated components enabling the translation from a data 

model to another data model. 

sensiNact solution is based on the OSGi specification [3], a new bridge can be added or removed at 

runtime according to the needs of the users or of the environment. Thus, the integration of a new 

protocol into the platform does not affect the others components already available. sensiNact also 

limits the development time related to the integration of a new protocol because the developer only 

focuses on the protocol and the data model. 

                                                           

1 https://projects.eclipse.org/projects/technology.sensinact/ 
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Figure 18 - Connecting the physical devices to the oneM2M platform using sensiNact 

In the Wise-IoT project, sensiNact is deployed in Chamrousse, for the smart skiing use case. sensiNact 

can be deployed in a distributed way. In imply that two deployed instances of sensiNact can be 

connected using an Eastwest interface. The two instances of sensiNact, one in Chamrousse and one in 

the backend Wise-IoT platform instance, share the resources but from the user point of view there is 

only one system. The sensinact-oneM2M MMG module is only composed of a light version of 

sensiNact and of the oneM2M MQTT binding. The corresponding architecture is presented in Figure 

18. 

When the Wise-IoT platform wants to gather data from the sensiNact deployed use case site, the 

MMG just have to instantiate the sensinact-oneM2M MMG module. The later connects to the on-site 

sensiNact and can then push data to oneM2M platform using MQTT binding2. 

Finally, to be supported by the MMG, the sensiNact-oneM2M MMG module, i.e., the dedicated 

oneM2M bridge and the core, are packaged in a Docker container and stored into the MMG R2 

repository. Thus, it can be instantiated for interconnecting smart skiing devices to the Wise-IoT 

platform. 

3.3.8  Insator -oneM2M  

Insator is an enterprise IoT  platform that supports developing smart solutions and intelligent services 

providing an IoT data pipeline, analytics capabilies and iteroperability with enterprise systems. It 

covers on premise and cloud environment both targeting enterprise businesses. By supporting various 

IoT connectivity protocols, Insator applied oneM2M standard certification from July in 2017 and 

developed OCF standard adaptor for Samsung Electronics devices in last Jan.  Furthermore, In order to 

support customized protocols to connect equipment and devices, Insator also have message schima 

modeling tool so that developers can leverage it when they need to build their own customized 

adaptor to connect paticular devices.  

                                                           

2 http://onem2m.org/images/files/deliverables/TS-0010-MQTT_protocol_binding-V1_0_1.pdf 
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Figure 19 - Insator Adaptable Architecture to support various IoT connectivity protocols 

In the WISE-IoT project, Insator is deployed in Alpensia, for the skiing resort management use case.   

In order to archive Insator-oneM2M interoperability, Insator applied bridge pattern to implement the 

different kind of standards. The corresponding architecture is presented in Figure 18. Once the front 

station collect the data from LoRA Gateway(IPE), internal message converter of Insator-oneM2M 

MMG which is responsible for translating the data format based on IoT standards changes the data for 

Insator Engine.  After changing the data as an internal message format,  Data Bus which is a message 

queue deliver it to Insator Engine so that the oneM2M service store the data into the database. Once 

the oneM2M comes in Insator as a uplink message, oneM2M proxy (IN-AE) get the message payload to 

parse the data based on the resource model we created for the resort management application(in-AE).  

Insator-oneM2M MMG also provide resource CRUD and the subscribe/notify functions for the resort 

management application. 






